On combining graph-partitioning with non-parametric clustering for image segmentation

نویسندگان

  • Aleix M. Martínez
  • Pradit Mittrapiyanuruk
  • Avinash C. Kak
چکیده

The goal of this communication is to suggest an alternative implementation of the k-way Ncut approach for image segmentation. We believe that our implementation alleviates a problem associated with the Ncut algorithm for some types of images: its tendency to partition regions that are nearly uniform with respect to the segmentation parameter. Previous implementations have used the k-means algorithm to cluster the data in the eigenspace of the affinity matrix. In the k-means based implementations, the number of clusters is estimated by minimizing a function that represents the quality of the results produced by each possible value of k. Our proposed approach uses the clustering algorithm of Koontz and Fukunaga in which k is automatically selected as clusters are formed (in a single iteration). We show comparison results obtained with the two different approaches to non-parametric clustering. The Ncut generated oversegmentations are further suppressed by a grouping stage—also Ncut based—in our implementation. The affinity matrix for the grouping stage uses similarity based on the mean values of the segments. 2004 Elsevier Inc. All rights reserved. * Corresponding author. 1-765-494-0880. E-mail addresses: [email protected] (A.M. Mart ınez), [email protected] (P. Mittrapiyanuruk), [email protected] (A.C. Kak). 1077-3142/$ see front matter 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.cviu.2004.01.003 A.M. Mart ınez et al. / Computer Vision and Image Understanding 95 (2004) 72–85 73

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-negative Matrix Factorization Framework for Combining Multiple Image Segmentations ; CU-CS-1050-08

Segmentation, or partitioning images into internally homogeneous regions, is an important first step in many Computer Vision tasks. In this paper, we attack the segmentation problem using an ensemble of low cost image segmentations. These segmentations are reconciled by applying recent techniques from the consensus clustering literature which exploit a Non-negative Matrix Factorization (NMF) fr...

متن کامل

Image Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing

Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...

متن کامل

Isoperimetric Graph Partitioning for Data Clustering and Image Segmentation

Spectral methods of graph partitioning have been shown to provide a powerful approach to the image segmentation problem. In this paper, we adopt a different approach, based on estimating the isoperimetric constant of an image graph. Our algorithm produces the high quality segmentations and data clustering of spectral methods, but with improved speed and stability.

متن کامل

Robust Method for E-Maximization and Hierarchical Clustering of Image Classification

We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...

متن کامل

Image Segmentation Using Pairwise Correlation Clustering

A pairwise hypergraph based image segmentation framework is formulated in a supervised manner for various images. The image segmentation is to infer the edge label over the pairwise hypergraph by maximizing the normalized cuts. Correlation clustering which is a graph partitioning algorithm, was shown to be effective in a number of applications such as identification, clustering of documents and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Vision and Image Understanding

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2004